Regarding the 1D heat equation, we define

Or =(x,1):0<x<L0O<t<T,

0p0Or ={(x,1) : x =00rL,0 <t < T} U {(x,0) : 0 < x < L},
Or =0r v ,0r.

In the higher dimensions,
Or =(X1):¥eQ,0<1t<T,
0,01 ={(%1): ¥€0Q,0 <t < T} U {(£0): ¥e Q=QuU i},
Or =Qr v ,0r.

where Q c R” is a connected bounded open set with smooth boundary 0Q.
In addition, we denote the outward pointing unit normal vector of ¢Q by v.

Moreover, regarding a function u(X,¢) = u(x,x2,- - , X, 1) we define
Vu :<M1’ T ’Mn) = (axlu, ) ax,,u)’

n
Au=uip + -+ tyy = Z&iu.
i=1

Definition 1. Suppose that a function satisfies u; < Au [resp. u;, = Au] in E Then, we call u a

subsolution [resp. supersolution] to the heat equation.

Theorem 2 (Weak maximum principle). A subsolution [resp. supersolution] u to the heat equation
satisfies

max 1 < max u, [resp. minu < min u]. (1)
Oor apQT or apQT

See the textbook Theorem 2.4 for the proof.

Theorem 3 (Comparison principle). Suppse that a subsolution u and a supersolution v to the heat

equation satisfy u < v on 0,Qr. Then, u < v holds on Qr.

See the textbook Corollary 2.5 for the proof.



2
Example (Interior estimate for time). Let u(x, t) be the solution to the 1D Cauchy-Neumann problem

with —u,(0,7) = uy(L,t) = 0 and u(x,0) = g(x). Then, the following holds

(1+ §) maxu?.

Oor

=

2
Uy <

Note that combining with the problem #1 in pset 2, one can obtain

(1+ 1) max g*

7 o<x<L

=

uié

Proof. We begin by defining a function w = ﬁ\ux\z + 1u?. Differentiating w yields
wy = 1 2u2 + ! UxUy + luu, < 12 + ;uxuxt + luu,,
N 2 2+ 2
4 > %ui + Lt + %uuxx,

—_1 2 1 1.2
Wax = 737 Ux + T Unlhxxx + juy + " P

namely w;, < w,,. Hence, the maximum principle yields,

t 2 _ _ R — -
Sy S Maxw = maxw = max{w(x,t) : x =0,x = L,or t = 0}.
Or pQr

-0 = 0 where x = 0 or x = L. In addition, if

By the Neumann condition, we have 5 t—ti-l) U2 = T t—ti-l)
2 = 2(00+1 ) u> = 0. Namely, on the parabolic boundary 0,Qr the following holds.

_ t
t = 0, then 3 U

max u.
Or

X

<
I
I
<
[}e)
N
N,

Therefore,

Or
O

The result in the example above implies that slopes u, of the solution can be controlled short time

later even if the initial data g has extremely high slopes |gy|.

Example (Barriers). Let u(%,¢) be the solution to the nD Cauchy-Dirichlet problem with u(%,¢) = 0

for € AQ and u(x,0) = g(x) for ¥ € Q. In addition, Q is a convex set. Then, the following holds

|Vul? < max|Vg[.
Or

See the bonus problem in pset 2 to work on non-convex domains.



Proof. We define w = |Vu|?. Then,
n n n
Wy =2 Z Uy = 2 2 u,-&iAu =2 Z u,-al(
i=1 i=1 i=1

n
_ 2 e e
wijj *22(””‘ + uinjj) = 2Zu,u,”.
i=1 i=1

n
”jj) =2 ) i),

n
= ij=1

j=1

Since Aw = Z?:l w;j, we have w, < Aw. Therefore, the maximum principle implies

|Vu|> < maxw = max w.
Oor apQT

Hence, it is enough to show |Vu|? < max [Vg|? on 0Q.

On the other hand, since 0Q is a level set of u, we have |Vu| = |u,| on 0Q where u, = (Vu,v).
Thus, we only need to show |u,| < max |Vg| on 0Q.

Now, we pick any point xo € 0Q and show |u,| < max |Vg| at the point. Then, by rotating and
translating €, we can assume xop = 0 and v = —e; without loss of generality. Next, we define a
barrier v(X,t) by

V(X 1) = Axy, where A = max |Vg|.

Then, we can observe u < v on 0,Qr. (Here, we used the convexity of Q. Draw a picture!!) In

addition, v; = Av = 0. By the maximum principle, the following holds in Q7.
u(x, 1) < Axy.

In the same manner, we can show u > —Ax;. Thus, |u,| = |u;| < Aat X =0 € 0Q.

One maybe curious about general Dirichlet boundary data. Suppose u(X, 1) = ¢(X, ) on 0Q. Given
Xo € 0Q, we consider a tangential direction T of 0Q at x. Then, we choose a vector-valued function
Y : (—€,€) — 0Q < R" satisfying y(0) = Xy, ¥’ (0) = 7. Then, given 7y we define g(s) = u(y,1y) =
¢(y(s), 1), and differentiate to obtain

g'(0) = (Vu(¥o, 10),7'(0)) = ur (%o, 20) = (Vep(X0, 10),¥"(0)) = - (%0, 10).

Namely, |u-| = |¢¢| < |Ve| on the boundary.



