Regarding the 1D heat equation, we define

$$
\begin{aligned}
Q_{T} & =(x, t): 0<x<L, 0<t \leqslant T \\
\partial_{p} Q_{T} & =\{(x, t): x=0 \operatorname{or} L, 0<t \leqslant T\} \cup\{(x, 0): 0 \leqslant x \leqslant L\} \\
\overline{Q_{T}} & =Q_{T} \cup \partial_{p} Q_{T}
\end{aligned}
$$

In the higher dimensions,

$$
\begin{aligned}
Q_{T} & =(\vec{x}, t): \vec{x} \in \Omega, 0<t \leqslant T \\
\partial_{p} Q_{T} & =\{(\vec{x}, t): \vec{x} \in \partial \Omega, 0<t \leqslant T\} \cup\{(\vec{x}, 0): \vec{x} \in \bar{\Omega}=\Omega \cup \partial \Omega\}, \\
\overline{Q_{T}} & =Q_{T} \cup \partial_{p} Q_{T}
\end{aligned}
$$

where $\Omega \subset \mathbb{R}^{n}$ is a connected bounded open set with smooth boundary $\partial \Omega$.
In addition, we denote the outward pointing unit normal vector of $\partial \Omega$ by v.
Moreover, regarding a function $u(\vec{x}, t)=u\left(x_{1}, x_{2}, \cdots, x_{n}, t\right)$ we define

$$
\begin{aligned}
& \nabla u=\left(u_{1}, \cdots, u_{n}\right)=\left(\partial_{x_{1}} u, \cdots, \partial_{x_{n}} u\right) \\
& \Delta u=u_{11}+\cdots+u_{n n}=\sum_{i=1}^{n} \partial_{x_{i}}^{2} u
\end{aligned}
$$

Definition 1. Suppose that a function satisfies $u_{t} \leqslant \Delta u$ [resp. $\left.u_{t} \geqslant \Delta u\right]$ in $\overline{Q_{T}}$. Then, we call u a subsolution [resp. supersolution] to the heat equation.

Theorem 2 (Weak maximum principle). A subsolution [resp. supersolution] u to the heat equation satisfies

$$
\begin{equation*}
\max _{\overline{Q_{T}}} u \leqslant \max _{\partial_{p} Q_{T}} u, \quad\left[\text { resp. } \min _{\overline{Q_{T}}} u \leqslant \min _{\partial_{p} Q_{T}} u\right] \tag{1}
\end{equation*}
$$

See the textbook Theorem 2.4 for the proof.
Theorem 3 (Comparison principle). Suppse that a subsolution u and a supersolution v to the heat equation satisfy $u \leqslant v$ on $\partial_{p} Q_{T}$. Then, $u \leqslant v$ holds on Q_{T}.

See the textbook Corollary 2.5 for the proof.

Example (Interior estimate for time). Let $u(x, t)$ be the solution to the 1D Cauchy-Neumann problem with $-u_{x}(0, t)=u_{x}(L, t)=0$ and $u(x, 0)=g(x)$. Then, the following holds

$$
u_{x}^{2} \leqslant \frac{1}{2}\left(1+\frac{1}{t}\right) \frac{\max }{Q_{T}} u^{2} .
$$

Note that combining with the problem \#1 in pset 2, one can obtain

$$
u_{x}^{2} \leqslant \frac{1}{2}\left(1+\frac{1}{t}\right) \max _{0 \leqslant x \leqslant L} g^{2} .
$$

Proof. We begin by defining a function $w=\frac{t}{2(t+1)}\left|u_{x}\right|^{2}+\frac{1}{4} u^{2}$. Differentiating w yields

$$
\begin{gathered}
w_{t}=\frac{1}{2(t+1)^{2}} u_{x}^{2}+\frac{t}{t+1} u_{x} u_{x t}+\frac{1}{2} u u_{t} \leqslant \frac{1}{2} u_{x}^{2}+\frac{t}{t+1} u_{x} u_{x t}+\frac{1}{2} u u_{t}, \\
w_{x x}=\frac{1}{t+1} u_{x x}^{2}+\frac{1}{t+1} u_{x} u_{x x x}+\frac{1}{2} u_{x}^{2}+\frac{u}{u_{x x}} \geqslant \frac{1}{2} u_{x}^{2}+\frac{1}{t+1} u_{x} u_{x x x}+\frac{1}{2} u u_{x x},
\end{gathered}
$$

namely $w_{t} \leqslant w_{x x}$. Hence, the maximum principle yields,

$$
\frac{t}{2(t+1)} u_{x}^{2} \leqslant \frac{\max }{\overline{Q_{T}}} w=\max _{\partial_{p} Q_{T}} w=\max \{w(x, t): x=0, x=L, \text { or } t=0\} .
$$

By the Neumann condition, we have $\frac{t}{2(t+1)} u_{x}^{2}=\frac{t}{2(t+1)} \cdot 0=0$ where $x=0$ or $x=L$. In addition, if $t=0$, then $\frac{t}{2(t+1)} u_{x}^{2}=\frac{0}{2(0+1)} u_{x}^{2}=0$. Namely, on the parabolic boundary $\partial_{p} Q_{T}$ the following holds.

$$
w=\frac{1}{4} u^{2} \leqslant \frac{1}{4} \frac{\max }{Q_{T}} u^{2} .
$$

Therefore,

$$
u_{x}^{2} \leqslant \frac{1}{2}\left(1+\frac{1}{t}\right) \frac{\max }{\overline{Q_{T}}} u^{2} .
$$

The result in the example above implies that slopes u_{x} of the solution can be controlled short time later even if the initial data g has extremely high slopes $\left|g_{x}\right|$.

Example (Barriers). Let $u(\vec{x}, t)$ be the solution to the nD Cauchy-Dirichlet problem with $u(\vec{x}, t)=0$ for $\vec{x} \in \partial \Omega$ and $u(x, 0)=g(x)$ for $\vec{x} \in \bar{\Omega}$. In addition, Ω is a convex set. Then, the following holds

$$
|\nabla u|^{2} \leqslant \max _{\overline{Q_{T}}}|\nabla g|^{2} .
$$

See the bonus problem in pset 2 to work on non-convex domains.

Proof. We define $w=|\nabla u|^{2}$. Then,

$$
\begin{aligned}
& w_{t}=2 \sum_{i=1}^{n} u_{i} u_{i t}=2 \sum_{i=1}^{n} u_{i} \partial_{i} \Delta u=2 \sum_{i=1}^{n} u_{i} \partial_{i}\left(\sum_{j=1}^{n} u_{j j}\right)=2 \sum_{i, j=1}^{n} u_{i} u_{i j j}, \\
& w_{j j}=2 \sum_{i=1}\left(u_{i j}^{2}+u_{i} u_{i j j}\right) \geqslant 2 \sum_{i=1}^{n} u_{i} u_{i j j} .
\end{aligned}
$$

Since $\Delta w=\sum_{j=1}^{n} w_{j j}$, we have $w_{t} \leqslant \Delta w$. Therefore, the maximum principle implies

$$
|\nabla u|^{2} \leqslant \max _{\overline{Q_{T}}} w=\max _{\partial_{p} Q_{T}} w .
$$

Hence, it is enough to show $|\nabla u|^{2} \leqslant \max |\nabla g|^{2}$ on $\partial \Omega$.
On the other hand, since $\partial \Omega$ is a level set of u, we have $|\nabla u|=\left|u_{v}\right|$ on $\partial \Omega$ where $u_{v}=\langle\nabla u, v\rangle$. Thus, we only need to show $\left|u_{v}\right| \leqslant \max |\nabla g|$ on $\partial \Omega$.

Now, we pick any point $x_{0} \in \partial \Omega$ and show $\left|u_{\nu}\right| \leqslant \max |\nabla g|$ at the point. Then, by rotating and translating Ω, we can assume $x_{0}=0$ and $v=-e_{1}$ without loss of generality. Next, we define a barrier $v(\vec{x}, t)$ by

$$
v(\vec{x}, t)=A x_{1}, \quad \text { where } A=\max |\nabla g| .
$$

Then, we can observe $u \leqslant v$ on $\partial_{p} Q_{T}$. (Here, we used the convexity of Ω. Draw a picture!!) In addition, $v_{t}=\Delta v=0$. By the maximum principle, the following holds in $\overline{Q_{T}}$.

$$
u(\vec{x}, t) \leqslant A x_{1} .
$$

In the same manner, we can show $u \geqslant-A x_{1}$. Thus, $\left|u_{v}\right|=\left|u_{1}\right| \leqslant A$ at $\vec{x}=0 \in \partial \Omega$.

One maybe curious about general Dirichlet boundary data. Suppose $u(\vec{x}, t)=\varphi(\vec{x}, t)$ on $\partial \Omega$. Given $\vec{x}_{0} \in \partial \Omega$, we consider a tangential direction τ of $\partial \Omega$ at x_{0}. Then, we choose a vector-valued function $\gamma:(-\epsilon, \epsilon) \rightarrow \partial \Omega \subset \mathbb{R}^{n}$ satisfying $\gamma(0)=\vec{x}_{0}, \gamma^{\prime}(0)=\tau$. Then, given t_{0} we define $g(s)=u\left(\gamma, t_{0}\right)=$ $\varphi\left(\gamma(s), t_{0}\right)$, and differentiate to obtain

$$
g^{\prime}(0)=\left\langle\nabla u\left(\vec{x}_{0}, t_{0}\right), \gamma^{\prime}(0)\right\rangle=u_{\tau}\left(\vec{x}_{0}, t_{0}\right)=\left\langle\nabla \varphi\left(\vec{x}_{0}, t_{0}\right), \gamma^{\prime}(0)\right\rangle=\varphi_{\tau}\left(\vec{x}_{0}, t_{0}\right) .
$$

Namely, $\left|u_{\tau}\right|=\left|\varphi_{\tau}\right| \leqslant|\nabla \varphi|$ on the boundary.

