Regarding the 1D heat equation, we define

$$Q_T = (x, t) : 0 < x < L, 0 < t \leq T,$$

$$\partial_p Q_T = \{(x, t) : x = 0 \text{ or } L, 0 < t \leq T\} \cup \{(x, 0) : 0 \leq x \leq L\},$$

$$\overline{Q_T} = Q_T \cup \partial_p Q_T.$$

In the higher dimensions,

$$Q_T = (\vec{x}, t) : \vec{x} \in \Omega, 0 < t \leq T,$$

$$\partial_p Q_T = \{ (\vec{x}, t) : \vec{x} \in \partial\Omega, 0 < t \leq T \} \cup \{ (\vec{x}, 0) : \vec{x} \in \overline{\Omega} = \Omega \cup \partial\Omega \},$$

$$\overline{Q_T} = Q_T \cup \partial_p Q_T.$$

where $\Omega \subset \mathbb{R}^n$ is a connected bounded open set with smooth boundary $\partial \Omega$.

In addition, we denote the outward pointing unit normal vector of $\partial \Omega$ by ν .

Moreover, regarding a function $u(\vec{x}, t) = u(x_1, x_2, \dots, x_n, t)$ we define

$$\nabla u = (u_1, \cdots, u_n) = (\partial_{x_1} u, \cdots, \partial_{x_n} u),$$
$$\Delta u = u_{11} + \cdots + u_{nn} = \sum_{i=1}^n \partial_{x_i}^2 u.$$

Definition 1. Suppose that a function satisfies $u_t \leq \Delta u$ [resp. $u_t \geq \Delta u$] in $\overline{Q_T}$. Then, we call u a subsolution [resp. supersolution] to the heat equation.

Theorem 2 (Weak maximum principle). *A subsolution [resp. supersolution] u to the heat equation satisfies*

$$\max_{\overline{Q_T}} u \leqslant \max_{\partial_p Q_T} u, \qquad [resp. \min_{\overline{Q_T}} u \leqslant \min_{\partial_p Q_T} u]. \tag{1}$$

See the textbook Theorem 2.4 for the proof.

Theorem 3 (Comparison principle). Suppose that a subsolution u and a supersolution v to the heat equation satisfy $u \leq v$ on $\partial_p Q_T$. Then, $u \leq v$ holds on Q_T .

See the textbook Corollary 2.5 for the proof.

Example (Interior estimate for time). Let u(x, t) be the solution to the 1D Cauchy-Neumann problem with $-u_x(0, t) = u_x(L, t) = 0$ and u(x, 0) = g(x). Then, the following holds

$$u_x^2 \leqslant \frac{1}{2}(1+\frac{1}{t})\max_{\overline{Q_T}} u^2.$$

Note that combining with the problem #1 in pset 2, one can obtain

$$u_x^2 \leq \frac{1}{2}(1+\frac{1}{t}) \max_{0 \leq x \leq L} g^2$$

Proof. We begin by defining a function $w = \frac{t}{2(t+1)}|u_x|^2 + \frac{1}{4}u^2$. Differentiating w yields

$$w_{t} = \frac{1}{2(t+1)^{2}}u_{x}^{2} + \frac{t}{t+1}u_{x}u_{xt} + \frac{1}{2}uu_{t} \leq \frac{1}{2}u_{x}^{2} + \frac{t}{t+1}u_{x}u_{xt} + \frac{1}{2}uu_{t},$$

$$w_{xx} = \frac{1}{t+1}u_{xx}^{2} + \frac{1}{t+1}u_{x}u_{xxx} + \frac{1}{2}u_{x}^{2} + \frac{u}{u_{xx}} \geq \frac{1}{2}u_{x}^{2} + \frac{1}{t+1}u_{x}u_{xxx} + \frac{1}{2}uu_{xx},$$

namely $w_t \leq w_{xx}$. Hence, the maximum principle yields,

$$\frac{t}{2(t+1)}u_x^2 \leq \max_{\overline{Q_T}} w = \max_{\partial_p Q_T} w = \max\{w(x,t) : x = 0, x = L, \text{ or } t = 0\}.$$

By the Neumann condition, we have $\frac{t}{2(t+1)}u_x^2 = \frac{t}{2(t+1)} \cdot 0 = 0$ where x = 0 or x = L. In addition, if t = 0, then $\frac{t}{2(t+1)}u_x^2 = \frac{0}{2(0+1)}u_x^2 = 0$. Namely, on the parabolic boundary $\partial_p Q_T$ the following holds.

$$w = \frac{1}{4}u^2 \leqslant \frac{1}{4}\max_{\overline{Q_T}}u^2.$$

Therefore,

$$u_x^2 \leqslant \frac{1}{2}(1+\frac{1}{t}) \max_{\overline{Q_T}} u^2.$$

The result in the example above implies that slopes u_x of the solution can be controlled short time later even if the initial data g has extremely high slopes $|g_x|$.

Example (Barriers). Let $u(\vec{x}, t)$ be the solution to the nD Cauchy-Dirichlet problem with $u(\vec{x}, t) = 0$ for $\vec{x} \in \partial \Omega$ and u(x, 0) = g(x) for $\vec{x} \in \overline{\Omega}$. In addition, Ω is a convex set. Then, the following holds

$$|
abla u|^2 \leqslant \max_{\overline{Q_T}} |
abla g|^2.$$

See the bonus problem in pset 2 to work on non-convex domains.

Proof. We define $w = |\nabla u|^2$. Then,

$$w_{t} = 2\sum_{i=1}^{n} u_{i}u_{it} = 2\sum_{i=1}^{n} u_{i}\partial_{i}\Delta u = 2\sum_{i=1}^{n} u_{i}\partial_{i}\left(\sum_{j=1}^{n} u_{jj}\right) = 2\sum_{i,j=1}^{n} u_{i}u_{ijj}$$
$$w_{jj} = 2\sum_{i=1}^{n} (u_{ij}^{2} + u_{i}u_{ijj}) \ge 2\sum_{i=1}^{n} u_{i}u_{ijj}.$$

Since $\Delta w = \sum_{j=1}^{n} w_{jj}$, we have $w_t \leq \Delta w$. Therefore, the maximum principle implies

$$|
abla u|^2 \leq \max_{\overline{Q_T}} w = \max_{\partial_p Q_T} w.$$

Hence, it is enough to show $|\nabla u|^2 \leq \max |\nabla g|^2$ on $\partial \Omega$.

On the other hand, since $\partial \Omega$ is a level set of u, we have $|\nabla u| = |u_v|$ on $\partial \Omega$ where $u_v = \langle \nabla u, v \rangle$. Thus, we only need to show $|u_v| \leq \max |\nabla g|$ on $\partial \Omega$.

Now, we pick any point $x_0 \in \partial \Omega$ and show $|u_v| \leq \max |\nabla g|$ at the point. Then, by rotating and translating Ω , we can assume $x_0 = 0$ and $v = -e_1$ without loss of generality. Next, we define a *barrier* $v(\vec{x}, t)$ by

$$v(\vec{x}, t) = Ax_1,$$
 where $A = \max |\nabla g|.$

Then, we can observe $u \leq v$ on $\partial_p Q_T$. (Here, we used the convexity of Ω . Draw a picture!!) In addition, $v_t = \Delta v = 0$. By the maximum principle, the following holds in $\overline{Q_T}$.

$$u(\vec{x},t) \leqslant Ax_1$$

In the same manner, we can show $u \ge -Ax_1$. Thus, $|u_v| = |u_1| \le A$ at $\vec{x} = 0 \in \partial \Omega$.

One maybe curious about general Dirichlet boundary data. Suppose $u(\vec{x}, t) = \varphi(\vec{x}, t)$ on $\partial\Omega$. Given $\vec{x}_0 \in \partial\Omega$, we consider a tangential direction τ of $\partial\Omega$ at x_0 . Then, we choose a vector-valued function $\gamma : (-\epsilon, \epsilon) \rightarrow \partial\Omega \subset \mathbb{R}^n$ satisfying $\gamma(0) = \vec{x}_0, \gamma'(0) = \tau$. Then, given t_0 we define $g(s) = u(\gamma, t_0) = \varphi(\gamma(s), t_0)$, and differentiate to obtain

$$g'(0) = \langle \nabla u(\vec{x}_0, t_0), \gamma'(0) \rangle = u_\tau(\vec{x}_0, t_0) = \langle \nabla \varphi(\vec{x}_0, t_0), \gamma'(0) \rangle = \varphi_\tau(\vec{x}_0, t_0).$$

Namely, $|u_{\tau}| = |\varphi_{\tau}| \leq |\nabla \varphi|$ on the boundary.