
Regarding the 1D heat equation, we define

QT “px, tq : 0 ă x ă L, 0 ă t ď T ,

BpQT “tpx, tq : x “ 0orL, 0 ă t ď Tu Y tpx, 0q : 0 ď x ď Lu,

QT “QT Y BpQT .

In the higher dimensions,

QT “p~x, tq : ~x P Ω, 0 ă t ď T ,

BpQT “tp~x, tq : ~x P BΩ, 0 ă t ď Tu Y tp~x, 0q : ~x P Ω “ ΩY BΩu,

QT “QT Y BpQT .

where Ω Ă Rn is a connected bounded open set with smooth boundary BΩ.

In addition, we denote the outward pointing unit normal vector of BΩ by ν.

Moreover, regarding a function up~x, tq “ upx1, x2, ¨ ¨ ¨ , xn, tq we define

∇u “pu1, ¨ ¨ ¨ , unq “ pBx1u, ¨ ¨ ¨ , Bxnuq,

∆u “u11 ` ¨ ¨ ¨ ` unn “

n
ÿ

i“1

B2
xi

u.

Definition 1. Suppose that a function satisfies ut ď ∆u [resp. ut ě ∆u] in QT . Then, we call u a

subsolution [resp. supersolution] to the heat equation.

Theorem 2 (Weak maximum principle). A subsolution [resp. supersolution] u to the heat equation

satisfies

max
QT

u ď max
BpQT

u, rresp. min
QT

u ď min
BpQT

us. (1)

See the textbook Theorem 2.4 for the proof.

Theorem 3 (Comparison principle). Suppse that a subsolution u and a supersolution v to the heat

equation satisfy u ď v on BpQT . Then, u ď v holds on QT .

See the textbook Corollary 2.5 for the proof.
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Example (Interior estimate for time). Let upx, tq be the solution to the 1D Cauchy-Neumann problem

with ´uxp0, tq “ uxpL, tq “ 0 and upx, 0q “ gpxq. Then, the following holds

u2
x ď

1
2p1`

1
t qmax

QT

u2.

Note that combining with the problem #1 in pset 2, one can obtain

u2
x ď

1
2p1`

1
t q max

0ďxďL
g2.

Proof. We begin by defining a function w “ t
2pt`1q |ux|

2 ` 1
4 u2. Differentiating w yields

wt “
1

2pt`1q2 u2
x `

t
t ` 1

uxuxt `
1
2 uut ď

1
2 u2

x `
t

t ` 1
uxuxt `

1
2 uut,

wxx “
1

t`1 u2
xx `

1
t`1 uxuxxx `

1
2 u2

x `
u
u xx ě

1
2 u2

x `
1

t`1 uxuxxx `
1
2 uuxx,

namely wt ď wxx. Hence, the maximum principle yields,

t
2pt`1qu

2
x ď max

QT

w “ max
BpQT

w “ maxtwpx, tq : x “ 0, x “ L, or t “ 0u.

By the Neumann condition, we have t
2pt`1qu

2
x “

t
2pt`1q ¨ 0 “ 0 where x “ 0 or x “ L. In addition, if

t “ 0, then t
2pt`1qu

2
x “

0
2p0`1qu

2
x “ 0. Namely, on the parabolic boundary BpQT the following holds.

w “ 1
4 u2 ď 1

4 max
QT

u2.

Therefore,

u2
x ď

1
2p1`

1
t qmax

QT

u2.

�

The result in the example above implies that slopes ux of the solution can be controlled short time

later even if the initial data g has extremely high slopes |gx|.

Example (Barriers). Let up~x, tq be the solution to the nD Cauchy-Dirichlet problem with up~x, tq “ 0

for ~x P BΩ and upx, 0q “ gpxq for ~x P Ω. In addition, Ω is a convex set. Then, the following holds

|∇u|2 ď max
QT

|∇g|2.

See the bonus problem in pset 2 to work on non-convex domains.
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Proof. We define w “ |∇u|2. Then,

wt “2
n
ÿ

i“1

uiuit “ 2
n
ÿ

i“1

uiBi∆u “ 2
n
ÿ

i“1

uiBi

ˆ n
ÿ

j“1

u j j

˙

“ 2
n
ÿ

i, j“1

uiui j j,

w j j “2
ÿ

i“1

pu2
i j ` uiui j jq ě 2

n
ÿ

i“1

uiui j j.

Since ∆w “
řn

j“1 w j j, we have wt ď ∆w. Therefore, the maximum principle implies

|∇u|2 ď max
QT

w “ max
BpQT

w.

Hence, it is enough to show |∇u|2 ď max |∇g|2 on BΩ.

On the other hand, since BΩ is a level set of u, we have |∇u| “ |uν| on BΩ where uν “ x∇u, νy.

Thus, we only need to show |uν| ď max |∇g| on BΩ.

Now, we pick any point x0 P BΩ and show |uν| ď max |∇g| at the point. Then, by rotating and

translating Ω, we can assume x0 “ 0 and ν “ ´e1 without loss of generality. Next, we define a

barrier vp~x, tq by

vp~x, tq “ Ax1, where A “ max |∇g|.

Then, we can observe u ď v on BpQT . (Here, we used the convexity of Ω. Draw a picture!!) In

addition, vt “ ∆v “ 0. By the maximum principle, the following holds in QT .

up~x, tq ď Ax1.

In the same manner, we can show u ě ´Ax1. Thus, |uν| “ |u1| ď A at ~x “ 0 P BΩ.

�

One maybe curious about general Dirichlet boundary data. Suppose up~x, tq “ ϕp~x, tq on BΩ. Given

~x0 P BΩ, we consider a tangential direction τ of BΩ at x0. Then, we choose a vector-valued function

γ : p´ε, εq Ñ BΩ Ă Rn satisfying γp0q “ ~x0, γ1p0q “ τ. Then, given t0 we define gpsq “ upγ, t0q “

ϕpγpsq, t0q, and differentiate to obtain

g1p0q “ x∇up~x0, t0q, γ1p0qy “ uτp~x0, t0q “ x∇ϕp~x0, t0q, γ1p0qy “ ϕτp~x0, t0q.

Namely, |uτ| “ |ϕτ| ď |∇ϕ| on the boundary.


